CISC889: Advanced Topics in Artificial Intelligence

Credits: 3

1. Instructor Information

Instructor: Dr. Xi Peng

Email: xipeng@udel.edu Office hours by schedule

2. Prerequisites

• Mathematics Background:

- Calculus; (require)
- Linear Algebra; (require)
- Statistics. (require)
- Computer Sciences Background:
 - Data Structure & Algorithm; *(require)*
 - Intro to Machine Learning or AI; (require)
 - Other machine learning related courses. (recommend)
- Programming background:
 - Python. (Require)

3. Course Description

This course introduces the preliminary theory, models, and algorithms of neural networks and deep learning. It will cover the foundations of deep learning, understand state-of-the-art models and their applications, and learn how to program in PyTorch. More specifically, topics include DNN, CNN, RNN, GAN, Deep Reinforcement Learning, and Deep Transfer Learning.

Topics (tentative):

- Machine Learning Foundation:
 - What is machine learning?
 - Logistic Regression
 - Gradient Descent
- Deep Learning Models:

- DNN
- CNN
- RNN
- Training Tips

• Advanced Deep Learning Topics:

- Generative Adversarial Network
- Deep Transfer Learning
- Graph Neural Network & Graph Convolutional Network (GNN/GCN)
- Explainable Deep Learning (XAI)

• Programming

- PyTorch
- Libraries: Numpy, Scipy, Scikit-learn, Matplotlib, ...

4. Resources

- Course slides:
 - All the slides will be uploaded before/after the lecture.
 - This is the main learning resource.
 - All the textbooks are recommended but not required.

• Textbook:

- <u>"Deep Learning,"</u> I. Goodfellow (2015). (recommend)
- <u>"Machine Learning, A Probabilistic Perspective,"</u> K. Murphy (2012). *(recommend)*
- "Pattern Recognition and Machine Learning," C. Bishop (2006). (recommend)
- Online Resources
 - Statistics
 - <u>Probability Review (David Blei, Princeton)</u> (recommend)
 - Linear Algebra
 - Linear Algebra Tutorial (C.T. Abdallah, Penn) (recommend)
 - Linear Algebra Review and Reference (Zico Kolter and Chuong Do, Stanford)
 - Linear Algebra Lecture (Gilbert Strang, MIT)
 - Python
 - <u>A Visual Intro to Numpy and Data Representation</u>
 - Machine Learning
 - <u>Coursera-Machine Learning (Andrew Ng, Stanford)</u>
 - Least Squares in Matrix Form

5. Final Grade Breakdown

Course Component	Percentage of Total
Five programming homework (individual) (10% each)	50%
 Final project (individual) Proposal (5-min) Presentation (10-min) (20%) Report (4-page) (10%) 	30%
Paper presentation (1 paper, 10 mins)	10%
Attendance	10%

6. Grading and Submission Policy

• Homework (50%):

- All homework assignments are **individual** problems and must be done **individually**;
- PDF report to include all results;
- 100% grade penalty if group work OR code sharing OR online copy is detected;
- Late submission will be charged by 20% penalty each late day and 3 days maximum;
- Please submit the homework to **Canvas**;

• Final project (30%):

- Individual;
- Proposal:
 - In-class presentation: **5-page slides plus 5-min pitch**;
 - Approve or Revise;
- Presentation (20%):
 - In-class presentation: 15-page slides plus 10-min pitch;
 - Crowdsourcing grading;
- Report (10%):

- **4-page PDF** minimum;
- Paper presentation (10%) (Please check "announcements"):
 - Individual;
 - Pickout **ONE** paper from the provided list;
 - Pickout **ONE** slot to present the paper in **10 mins**;

• Attendance (10%):

- Attendance is **mandatory** with a sign-in sheet;
- At most 3 absences without excuse.

• Final grading curve:

- The score in each category is less important than the score relative to the class average;
- \circ There is no fixed curve. If everyone performs well then everyone can get top grades.